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Abstract

The natural interaction and control performance of lower limb rehabilitation robots are closely linked to biomechanical

information from various human locomotion activities. Multidimensional human motion data significantly deepen the

understanding of the complex mechanisms governing neuromuscular alterations, thereby facilitating the development

and application of rehabilitation robots in multifaceted real-world environments. However, currently available lower limb

datasets are inadequate for supplying the essential multimodal data and large-scale gait samples necessary for effective

data-driven approaches, and they neglect the significant effects of acquisition interference in real applications. To fill

this gap, we present the K2MUSE dataset, which includes a comprehensive collection of multimodal data, comprising

kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements. The

proposed dataset includes lower limb multimodal data from 30 able-bodied participants walking under different inclines

(0◦, ±5◦, and ±10◦), various speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s), and different nonideal acquisition conditions

(muscle fatigue, electrode shifts, and inter-day differences). The kinematic and ground reaction force data were

collected via a Vicon motion capture system and an instrumented treadmill with embedded force plates, whereas

the sEMG and AUS data were synchronously recorded for thirteen muscles on the bilateral lower limbs. This dataset

offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses

of lower limb locomotion. The dataset is available at https://k2muse.github.io/.
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1 Introduction

Rehabilitation robots, such as autonomous wearable

exoskeletons and advanced prostheses, are inherently

linked to human locomotion mechanisms Tan et al.

(2022); Chen et al. (2024a). The bioinspired system

designs and control strategies necessitate that efficient

human-robot interaction (HRI) processes rely on abundant

biomechanical data derived from motor skills Elery et al.

(2020); Quintero et al. (2018); Kang et al. (2019). However,

acquiring well-structured human gait data presents

significant challenges, as standardized procedures and

reliable protocols are needed. Moreover, fully capturing the

diverse range of locomotion tasks remains difficult. Existing

motion datasets focus primarily on motion analysis and

recognition David et al. (2023), revealing a gap between the

available data and their applicability to human-robot coupled

systems. To meet the demands of complex human-robot

1State Key Laboratory of Robotics, Shenyang Institute of Automation,

Chinese Academy of Sciences, Shenyang, China
2University of Chinese Academy of Sciences, Beijing, China
3College of Artificial Intelligence, Tianjin Key Laboratory of Intelligent

Robotics, Nankai University, Tianjin, China
4School of Artificial Intelligence and Automation, Huazhong University of

Science and Technology, Wuhan, China

Corresponding author:

Bi Zhang, State Key Laboratory of Robotics, Shenyang Institute of

Automation, Chinese Academy of Sciences, No.114 Nanta street,

Shenyang, Liaoning 110016, China.

Email: zhangbi@sia.cn

Xingang Zhao, State Key Laboratory of Robotics, Shenyang Institute

of Automation, Chinese Academy of Sciences, No.114 Nanta street,

Shenyang, Liaoning 110016, China.

Email: zhaoxingang@sia.cn

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

http://arxiv.org/abs/2504.14602v1
https://orcid.org/0009-0000-2297-8278
https://orcid.org/0000-0001-8001-002X
https://orcid.org/0000-0003-0990-0323
https://orcid.org/0000-0001-5930-0209
https://orcid.org/0009-0002-5195-6128
https://orcid.org/0000-0002-3833-487X
https://orcid.org/0000-0002-7370-5189
https://orcid.org/0000-0002-6267-8824
https://orcid.org/0000-0003-1329-1487
https://orcid.org/0000-0001-8194-1870
https://k2muse.github.io/


2 Journal Title XX(X)

coordination scenarios, enhancing the effectiveness and

diversity of human motion data is essential.

In the context of robotic system embodiment, exoskeleton

controllers should be designed to operate in harmony with

the human nervous system to achieve seamless interaction

Wolpert and Kawato (1998). To augment motor performance

or restore walking ability, human motion data are often used

as a reference trajectory for control strategies Quintero et al.

(2018); Kang et al. (2019), allowing the control system to

manage various rhythmic continuous movements through

finite state machines Young and Ferris (2016). However,

this control strategy is constrained by predefined assistive

modes, making it difficult to generalize this approach to

other tasks. Although human-in-the-loop optimization can

enhance walking assistive torques and reduce energy costs,

it also increases the time burden for participants Zhang et al.

(2017); Ding et al. (2018). To overcome these limitations,

Divekar et al. (2024) proposed a task-adaptive controller that

optimizes performance by dynamically adjusting to specific

applications and physiological states. In addition, a different

approach to designing control frameworks for multitask and

multimodal motion assistance combines the reliability of

physical modeling with the adaptability of modern artificial

intelligence (AI) Chen et al. (2024b). Further integrating the

strengths of multidimensional physiological data and AI

would enable exoskeletons to respond more dynamically to

various conditions.

Given the unique biomechanics of human move-

ment, data-driven approaches provide alternative solu-

tions to bridge the gap from lab technology to real-

world applications, which have demonstrated potential in

optimizing the effectiveness of control laws Slade et al.

(2022). By utilizing human kinematic trajectory data from

CMU Motion Capture Database (2024), optimized exoskele-

ton controller parameters trained through reinforcement

learning algorithms in a simulation environment can facili-

tate simulation-to-reality (sim2real) motion assistance across

multiple scenarios Luo et al. (2024). Data-driven meth-

ods can also be employed to establish mapping rela-

tionships between wearable sensor data and joint torques

Molinaro et al. (2024b). Datasets from various walking tasks

have been leveraged to estimate biological joint moments,

with the resulting torques serving as control commands

for the exoskeleton Scherpereel et al. (2023). By implicitly

encoding motion data, the unpredictable nature of human

movement can be transformed into an end-to-end model

mapping task, realizing the perception and actuation loop

Molinaro et al. (2024a). This approach allows the controller

to effectively manage interactions between the human, robot,

and environment, thereby enhancing the robustness, scal-

ability, and versatility of the control system. Therefore,

datasets with multimodal signals and multiple scenario tasks

can support the learning of end-to-end controllers that

adapt to biomechanical changes in human motion. This

facilitates a symbiotic relationship between humans and

robots, endowing the controller with embodied intelligence

Weber and Matsiko (2023).

With advancements in medicine, robotics, and AI,

research on lower limb locomotion has become progressively

more sophisticated. Datasets related to lower limb loco-

motion have been instrumental in informing this research,

as numerous studies have documented the kinematics and

kinetics of able-bodied participants engaged in steady-state

activities David et al. (2023). These datasets encompass a

variety of tasks beyond level-ground walking Fukuchi et al.

(2018), including running Novacheck (1998), slope walk-

ing Camargo et al. (2021), stair ascent/descent Riener et al.

(2002), as well as sitting and standing Perera et al. (2024). In

addition, Reznick et al. (2021) and Scherpereel et al. (2023)

further expanded the task spectrum by incorporating non-

steady conditions and non-cyclic tasks. In tandem with kine-

matic and kinetic data, signals from other modalities, such

as surface electromyography (sEMG), have been explored

to measure the activation of specific lower limb muscles

Lencioni et al. (2019); Moreira et al. (2021); Dimitrov et al.

(2023). These findings provide insights into the physiolog-

ical changes that occur during movement. These datasets

encompass diverse movement patterns across various terrain

conditions and walking speeds. Nonetheless, the constraints

of the experimental protocols in existing datasets typically

limit the availability of multimodal data to a restricted num-

ber of strides Lencioni et al. (2019); Moreira et al. (2021);

Dimitrov et al. (2023); Wei et al. (2023).

To enhance the diversity and representativeness of

datasets, it is crucial to explore a wider range of acquisi-

tion paradigms and signal modalities beyond conventional

walking tasks. As summarized by Zhu et al. (2022), sEMG,

as a characterization of muscle action potentials, is sub-

ject to various nonideal conditions arising from different

human-robot-environment interactions, such as electrode

shifts, muscle fatigue, inter-day differences, and individual

variability. These conditions have been less explored in

studies of lower limb motion datasets. Investigating these

conditions contributes to the laboratory’s intention recogni-

tion technologies for real-world applications and enhances

our understanding of biomechanics. With respect to sig-

nal modality, researchers investigating muscle deformation
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measurement methods have explored the use of brightness-

mode ultrasound to analyze parameters such as the pennation

angle and its relationship with joint torque during muscle

contraction Nuckols et al. (2021); Dick et al. (2017). Despite

advancements in the miniaturization of wearable devices

Wang et al. (2022), hardware constraints and computational

demands remain significant challenges. Recent advance-

ments in amplitude mode ultrasound (AUS), a lightweight

technique for measuring muscle thickness, offer promising

solutions for obtaining biomechanical data beyond sEMG

and have been widely applied in the recognition of hand

and wrist motions Wei et al. (2022); Yang et al. (2018, 2022,

2020). AUS employs one-dimensional scanning to track

muscle depth variations, minimizing the dependence on

image processing algorithms and complex instrumentation.

Therefore, AUS provides a representation of mechanical

output by measuring muscle deformation, effectively com-

pensating for the limitations of sEMG, which is susceptible

to neurological conditions, thereby improving the insight

into muscle physiological mechanisms. However, its applica-

tion in estimating mechanical loads during continuous lower

limb movements remains less explored Jin et al. (2024). In

summary, large-scale multimodal datasets that encompass a

wide range of complex environments and movement patterns

are lacking. This gap limits the availability of comprehensive

human motion data and hinders the progression of rehabili-

tation robotics technology.

In this paper, we introduce an open-source dataset,

K2MUSE, which encompasses 20 ambulation conditions

and includes comprehensive kinematics, kinetics, amplitude

mode ultrasound and surface electromyography data, along-

side participants’ anthropometric information. The dataset

was collected from 30 able-bodied healthy participants. As

shown in Figure 1, to connect with daily living settings

and encompass a wide range of locomotion modes and

conditions, the data collection process involved a variety of

locomotion activities, including walking on level ground;

ascending walking on 5◦ and 10◦ ramps; and descending

walking on 5◦ and 10◦ ramps. In terms of walking speed,

three different speeds were set: 0.5 m/s, 1.0 m/s, and 1.5 m/s.

Moreover, the data collection conditions encompassed mul-

tiple scenarios, including ideal conditions, muscle fatigue,

electrode shifts, and inter-day differences. This dataset is

suitable for developing control algorithms for lower limb

rehabilitation exoskeletons, active prostheses, and humanoid

robots, as well as for intention recognition and biomechan-

ical analysis of lower limb movements. The main contribu-

tions of this paper are summarized as follows:

• To our knowledge, this is the first publicly available lower

limb motion dataset that simultaneously includes motion

capture positions, force plate data, AUS, and sEMG.

• The dataset encompasses up to 20 ambulation conditions,

covering a wide range of various inclines and speeds,

along with acquisition conditions that account for various

nonideal factors.

• A comprehensive reliability assessment and analysis

of the dataset were conducted, and its validity was

confirmed through comparisons with publicly available

datasets and continuous motion estimation experiments.

2 Related work

Human lower limb motion data play a crucial role in the

advancement of rehabilitation robots, and various existing

datasets have explored a diverse array of walking scenarios

and speeds. This section provides a summary of recent lower

limb locomotion datasets, as detailed in Table 1.

The variation of the lower limbs in three-dimensional

space is a fundamental representation of lower limb

ambulation, typically captured via inertial measurement units

(IMUs) and camera-based motion capture systems Luo et al.

(2020); Reznick et al. (2021). In addition, when combined

with kinematic data Fukuchi et al. (2018); Simonlehner et al.

(2024), the ground reaction force measured by force plates

can be used to derive kinetics. Luo et al. (2020) conducted

walking experiments on nine different outdoor surfaces,

employing six IMUs to record 3D acceleration and 3D

gyroscope data from 30 participants. To obtain kinetic data

of the joints, Fukuchi et al. (2018) asked volunteers to walk

at self-selected speeds and eight controlled speeds on both

overground and treadmill surfaces. However, the data were

limited to steady-state tasks. Therefore, Reznick et al. (2021)

considered non-steady conditions. Using a motion capture

system and force plates, the experimental protocol involved

participants walking and running at various speeds and

inclines on a treadmill, as well as performing sit-to-stand

transitions and stair ascent/descent.

In addition to kinematic and kinetic data, other

physiological data have also been included in lower limb

datasets, particularly sEMG, which has been widely recorded

in numerous datasets Hu et al. (2018); Schulte et al. (2023).

The study by Schwartz et al. (2008) addressed the gap

in children’s data by including multimodal gait data for

level ground walking at four different speeds. Similarly,

Moreira et al. (2021) reported a dataset from straight walking

trials at controlled speeds ranging from 1.0 to 4.0 km/h.

Prepared using sagej.cls
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Table 1. Summary of publicly available biomechanics datasets for lower limb locomotion.

Dataset Acquisition Device Data Modality
Participant Information

Ambulation Mode Walking Speed Ramp Angle

Total Male Female

Schwartz et al. (2008) 12-camera MCS, force plate,

sEMG sensor

kinematics, kinetics, sEMG 83 – – LG walking very slow, slow, self-selected, fast N/A

Bovi et al. (2011) 9-camera MCS, force plate, sEMG

sensor

kinematics, kinetics, sEMG 40 18 22 natural walking, toe-walking, heel-walking,

step AS/DS

natural speed, very slow, slow, medium, fast N/A

He et al. (2018) ActiCap system (EEG, EOG),

goniometers

kinematics, EEG, EOG 8 3 5 threadmill walking 1 mph N/A

Brantley et al. (2018) EEG and EMG system, IMU kinematics, EEG, EMG 10 5 5 LG walking, ramps, stairs. preferred speed N/A

Hu et al. (2018) sEMG system, goniometers, IMU kinematics, sEMG 10 7 3 sitting, standing, LG walking, ramp AS/DS,

stair AS/DS

self-selected speed 10°

Fukuchi et al. (2018) 12-camera MCS, force platform,

instrumented treadmill

kinematics, kinetics 42 – – LG walking self-selected speed ±30%, 40%–145% of

dimensionless speed

N/A

Lencioni et al. (2019) 9-camera MCS, force platform,

sEMG recording system

kinematics, kinetics, sEMG 50 25 25 LG walking, toe-walking, heel-walking,

step AS/DS

nature speed, increasing/decreasing speed N/A

Luo et al. (2020) IMU kinematics 30 15 15 9 walking surfaces: flat even, up stairs,

down stairs, etc

self-selected speed (16.4 ± 4.2 seconds per

trial)

N/A

Reznick et al. (2021) 10-camera MCS, force plates,

instrumented threadmill

kinematics, kinetics 10 – 5F walking, running, ramp AS/DS, sit-to-stand,

stair ascent/descent

0.8–2.4 m/s 5◦, 10◦

Camargo et al. (2021) Vicon system, goniometers, IMU,

force plate, sEMG sensor

kinematics, kinetics, sEMG 22 – – LG walking, ramp ascent/descent,stair

ascent/descent

slow, normal, fast, 0.5–1.85m/s 5.2◦ – 18◦

Moreira et al. (2021) 12-camera MCS, force platform,

sEMG system

kinematics, kinetics, sEMG 16 8 8 LG walking 1.0–4.0 km/h N/A

Wei et al. (2023) 6-camera MCS, force platforms,

sEMG acquisition system

kinematics, kinetics, sEMG 40 30 10 LG walking, walking up/downstairs, etc. comfortable speed N/A

Schulte et al. (2023) IMU, sEMG system kinematics, sEMG 55 25 30 sitting, standing, walking, stair

ascent/descent, ramp ascent/descent, etc.

preferred speed N/A

Sharma et al. (2023) IMU, eye tracker kinematics, vision and gaze

data

76 39 37 LG walking, unrestricted walking in public

spaces, controlled obstacle course.

self-selected speed N/A

Ortiz et al. (2023) EEG, EOG, EMG acquisition

system

EEG, EOG, EMG 14 9 5 LG walking, ramp walking depend on the exoskeleton N/A

Dimitrov et al. (2023) 10-camera MCS, force platform,

IMU, EMG sensor

kinematics, kinetics,

HDsEMG

10 5 5 LG walking, ramp walking, stair

ascent/descent,sidestepping, etc.

slow, preferred, fast 5◦, 15◦

Van Criekinge et al.

(2023)

8-camera MCS, force plate, sEMG

system

kinematics, kinetics, sEMG 188 99 89 LG walking self-selected speed N/A

Scherpereel et al. (2023) 33-camera MCS, instrumented

treadmill, force plates, EMG sensor

kinematics, kinetics, sEMG 12 7 5 31 tasks include walking running, jumping,

sit-to-stand, etc.

0.6 m/s - 2.5m/s 5◦, 10◦

Perera et al. (2024) mocap system, force plate, EMG

sensor, IMU

kinematics, kinetics, sEMG 65 23 42 Sit-to-walk N/A N/A

Simonlehner et al. (2024) 12-camera MCS, force plate kinematics, kinetics 20 9 11 LG walking self-selected speed N/A

Note: MCS – motion capture system; LG – level ground; AS – ascending; DS – descending.
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Figure 1. Experiments were conducted in the biomechanics laboratory. (a) The experimental scene shows a participant equipped

with all the devices: a motion capture system, a treadmill with embedded force plates, an sEMG system, and an AUS device. (b)

Participants performed experiments on a treadmill under diverse conditions, including different ascending and descending ramps

and walking speeds. In the fatigue-induced experiment, the participants alternated between squatting and walking continuously.

In addition to walking at different speeds, the dataset

proposed by Bovi et al. (2011) and Lencioni et al. (2019)

included various other walking modes, such as toe-walking,

heel-walking, and step ascending/descending. Camargo et al.

(2021) reported kinematic, kinetic, and sEMG data from

walking trials at various speeds and slopes and included

information from IMUs and goniometers. Perera et al.

(2024) focused on sit-to-stand transitions, and recorded

kinematics, kinetics, IMU, and sEMG data from multiple

joints. Dimitrov et al. (2023) reported kinematic, kinetic,

IMU, and high-density sEMG data for various tasks, such

as walking at different speeds, ramp ascent/descent, sit-

to-stand-to-walk, stair ascent/descent, and side-stepping

gaits. To expand the number of walking tasks included in

the dataset, Wei et al. (2023) and Scherpereel et al. (2023)

designed 16 and 33 different motion tasks, respectively,

to capture the diversity of lower limb movements. These

datasets include kinematic, kinetic, and sEMG data for both

cyclic and non-cyclic activities. Van Criekinge et al. (2023)

made significant contributions in terms of participant scale,

reporting self-selected speed walking data from 138 healthy

adults and 50 stroke survivors. In addition to sEMG, other

biological signals, such as electroencephalography (EEG)

Ortiz et al. (2023); Brantley et al. (2018), electrooculogram

(EOG) He et al. (2018), and egocentric data Sharma et al.

(2023), have also been recorded to capture physiological

changes during walking.

To our knowledge, no existing dataset simultaneously

includes the following: kinematic and kinetic recordings,

multimodal physiological signal measurements, trials under

nonideal conditions, and large-scale walking data sufficient

for data-driven methods. To address these challenges,

we release a novel lower limb motion dataset that

includes comprehensive multimodal data across various

walking speeds and ramps. This dataset aims to promote

Prepared using sagej.cls
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further advancements in rehabilitation robotics and intention

recognition.

3 Methods

3.1 Participants

This dataset was acquired from thirty healthy participants:

twenty males, ten females, ranging in age from 22–34 years

(25.97±2.39), height from 145.2–186.7 cm (172.95±9.42),

and weight from 42.65–113 kg (69.65±15.04). The

participants were recruited from the Shenyang Institute

of Automation, Chinese Academy of Sciences. None

of the participants reported any neurological diseases

or musculoskeletal dysfunctions that could affect lower

extremity motor performance. The experimental protocol

was approved by the Ethics Committees of the Shenyang

Institute of Automation, Chinese Academy of Sciences, and

the People’s Hospital of Liaoning Province, China (2023-

MSLH-117), and was conducted in accordance with the

Declaration of Helsinki. All participants were briefed about

the procedures and potential risks and provided written,

informed consent before participating in the experiment.

3.2 Instrumentation

Data were collected in the Biomechanics Laboratory at the

Shenyang Institute of Automation, Chinese Academy of

Sciences. The laboratory is equipped with a motion capture

system, an instrumented treadmill, an sEMG acquisition

system, and an amplitude mode ultrasound acquisition

system to collect kinematic, kinetic, and biological signals

from various movements. Data synchronization between

different devices was achieved through the square wave

voltage signal generated by the Vicon Lock Lab. The

placement of retro-reflective markers and sensors was

always performed by two experienced assessors. The final

placement was determined after a consensus was reached.

3.2.1 Treadmill. All walking trials were conducted on a

fully instrumented treadmill (Bertec, Columbus, Ohio). The

treadmill features two independently controllable belts, each

equipped with a force plate underneath to capture six-

component force data at 1000 Hz. The treadmill incline

was configured via software, and its start/stop functions,

and speed were controlled by custom MATLAB code. The

treadmill acceleration was consistently set to 0.25 m/s2 in all

the acquisition experiments.

3.2.2 Motion capture. Three-dimensional kinematic tra-

jectories of retro-reflective markers (14 mm diameter) were

recorded at 100 Hz via a motion capture system consisting

of eight Vicon V5 cameras (Vicon, Oxford, UK). Before

the formal experiments commenced, motion capture volume

calibration of the cameras was conducted via a Vicon Active

Wand. The Plug-in Gait Model of Vicon was utilized for

kinematic and kinetic modeling. Joint angles were calculated

on basis of the positions of the markers. The joint forces,

moments, and powers were subsequently derived via the

kinetics of the force plates and the marker kinematics via

the Plug-in Gait Dynamic operation in the Nexus software.

A comprehensive description of the Plug-in Gait model,

including the specifications of the kinematic and kinetic

calculations, can be found in the Vicon Nexus User Guide

Vicon Motion Systems, Inc. (2024a) and the Plug-in Gait

Reference Guide Vicon Motion Systems, Inc. (2024b). The

placement of the markers followed the Vicon Plug-in Gait

lower body model marker set, with an additional set of mark-

ers attached to the subjects to improve the fault tolerance of

motion capture. These additional markers were used to fill in

the missing data frames in the marker trajectories after the

acquisition trials. The names and locations of all the markers

are shown in Figure 2, with detailed descriptions of specific

marker placements available in the Plug-in Gait Reference

Guide.

3.2.3 Electromyography. A wireless EMG sensor system

(Ultium EMG, Noraxon, USA) was used to record the

muscle activity of the bilateral lower limbs at a sampling

rate of 2000 Hz. In the hardware setup of MR software

(version 3.16, Noraxon, USA), the high-pass and low-

pass filter frequencies were configured to 20 Hz and 500

Hz, respectively. The Ultium EMG system was connected

to the Vicon Lock Lab via a synchronization system

(MyoSync, Noraxon, USA) to receive the synchronous

square wave signal. The surface EMG sensors and

Ag/AgCl electrodes were affixed to the skin via double-

sided tape. The electrode attachment positions were

determined through repeated palpation, following the

SENIAM recommendations Hermens et al. (2000). As

shown in Figure 3, the sEMG signals were recorded

bilaterally from different muscles, highlighted in blue

font. On the right side, 9 muscles were captured: the

tibialis anterior (TA), medial gastrocnemius (MG), lateral

gastrocnemius (LG), soleus (SOL), rectus femoris (RF),

vastus lateralis (VL), vastus medialis (VM), biceps femoris

(BF), and semitendinosus (SEM) muscles. On the left side, 4

muscles–TA, LG, RF, and BF–corresponding to the channels

of the amplitude mode ultrasound device were recorded.

3.2.4 Amplitude mode ultrasound. A wireless commer-

cial four-channel amplitude mode ultrasound (AUS) device

Prepared using sagej.cls
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14
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14
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9

5 5

Retro-reflective Marker

Anterior Superior Iliac Spine*

Posterior Superior Iliac Spine*

Lateral Hip

Thigh*

Medial Knee

Knee*

Shank Front

Tibia*

Medial Ankle

Ankle*

Medial Toe

Toe*

Lateral Toe

Heel*

Lateral Middle Foot

LASI*

LPSI*

L.Hip.Lat

LTHI*

L.Knee.Med

LKNE*

L.Shank.Front

LTIB*

L.Ankle.Med

LANK*

L.Toe.Med

LTOE*

L.Toe.Lat

LHEE*

L.MidFoot.Lat

Anatomical Description Marker Label

Figure 2. The modified marker set for motion capture. The markers were attached to the lower limbs in a generally symmetrical

arrangement, with the markers on the left side shown. Markers marked with ‘*’ were defined according to the Plug-in Gait lower

body model, which implements the Conventional Gait Model. Detailed marker placement instructions for the Plug-in Gait lower body

model can be found in the Plug-in Gait Reference Guide.

(ELONXI, China) was used to record AUS signals at a sam-

pling frequency of 20 Hz, with each frame containing 1000

samples Wei et al. (2022). The frequency of the transducers

was 5 MHz (9 mm diameter, 11 mm height), allowing a

detection depth of up to 38.5 mm, which is sufficient for

measuring contraction and extension changes within the

muscle. To ensure synchronous operation with other devices,

the AUS device was connected to the Vicon Lock Lab via a

synchronization line to receive the trigger voltage signal. The

AUS transducers were coated with an appropriate amount

of standard ultrasound coupling agent and then secured to

the skin surface of the left leg via PU film medical tape.

These transducers corresponded to the TA, LG, RF, and BF

muscles, as indicated in yellow in Figure 3.

3.3 Experimental protocol

This study captures kinematic, kinetic, AUS and sEMG

data during ambulation at various speeds and inclines under

a range of acquisition conditions. All ambulation modes

were performed on an instrumented treadmill. A custom

MATLAB code was used to control the synchronous start

and stop of all device acquisitions. Before each participant

arrived, the eight Vicon cameras of the motion capture

system were calibrated following the instructions provided

in the Vicon Nexus User Guide. The force plates in the

Bertec treadmill were hardware reset and zeroed in the Nexus

software. The force plates were recalibrated to zero after the

treadmill incline was adjusted.

3.3.1 Participant preparation. After providing informed

consent and receiving a brief introduction to all trials,

the participants were asked to wear tight-fitting shorts and

appropriate athletic shoes to ensure that the transmalleolar

axis was exposed. The participant’s top was subsequently

secured and tightened with an elastic strap to prevent

clothing from obscuring the markers on the pelvis while

walking. Before the dynamic capture trials, the following

preparations were carried out.

1. The following anthropometric measurements were taken

for the Plug-in Gait lower body model: body mass,

height, leg length, knee width and ankle width. The

measurements were used as inputs for the lower

body model, and detailed descriptions are available

in the Vicon Nexus User Guide. Comprehensive

information about all individuals can be found in the

‘ParticipantInformation.xlsx’ file.

2. Before the placement of the markers and sensors, the hair

was removed from the participant’s recording sites, and

cotton pads containing 75% alcohol were used to clean

the skin surfaces of sweat, keratin, and oil.

3. Sixteen retro-reflective markers were attached to the

skin above anatomical landmarks, and additional fourteen
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Figure 3. The sEMG sensors and AUS transducers were attached to the participants’ skin. The channels of different instrumentation

are highlighted in different colors for easy distinction. The symbol ‘#’ corresponds to the channel numbers of different devices.

markers were placed on the lower body through manual

palpation. All the markers were securely fixed to the skin

using a combination of double-sided tape and PU film

medical tape at their base.

4. Thirteen pairs of Ag/AgCl electrodes were attached

to muscle locations, and sEMG sensors were placed

next to the electrodes using double-sided adhesive tape.

The electrodes and sEMG sensors were connected via

specially designed electrode wires. PU film medical tape

was used to reinforce the electrodes and sensors.

5. Four transducers coated with a coupling agent were

placed between paired electrodes, which were trimmed

properly to accommodate the transducers. The transduc-

ers were connected to the hardware ultrasound system,

which was secured to an adjustable vest using elastic

bands and hook-and-loop fasteners. The cables were

wrapped with non-woven fabric tape to present them from

being covered markers during locomotion.

After completing the preparations, a labeling skeleton was

created for the participant via the Nexus software, and a

static calibration was performed to tailor the skeleton to

the participant. The participants were instructed to stand

comfortably in the middle of the treadmill with their feet

shoulder width apart and positioned on either side of the belt.

They maintained an upright posture with their arms crossed

in front of their chest to ensure that all the markers were

visible. A static trial was then captured, and the calibration

was finalized using a frame where all the markers were

fully visible. The collection of dynamic locomotion data for

participants was subsequently initiated.

3.3.2 Ideal conditions. All participants in the dataset were

involved in the ideal condition experiment. The treadmill

inclinations included level ground (LG), descending ramp

(DS), and ascending ramp (AS), with angles of 0◦, ±5◦,

and ±10◦, respectively. The transition between ramps was

achieved by altering the participant’s orientation on the

treadmill, with positive angles for ascending and negative

angles for descending. The participants first walked on

level ground at speeds of 0.5 m/s, 1.0 m/s, and 1.5 m/s.

The treadmill ramp was subsequently adjusted to 5◦, and

participants walked at -5◦ and +5◦ inclines, with speeds of

0.5 m/s and 1.0 m/s for both ramps. Finally, the treadmill

incline was adjusted to 10◦, and participants walked at -10◦

and +10◦ inclines, with speeds the same as those used at 5◦.

For each ramp, walking tests at each speed were repeated five

times, resulting in a total of 55 trials.

3.3.3 Muscle fatigue. After completing all the ideal

condition trials, the participants were instructed to rest for

5 minutes before they proceeded with the muscle fatigue

experiment. In this section of the experiment, the participants

were instructed to walk on level ground at a speed of 1.0

m/s. Between each trial, the participants performed a set of

lower limb exercises to induce muscle fatigue, as shown in

Figure 4 (a). The participants stood naturally with their feet
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Figure 4. Experimental setups for muscle fatigue and electrode shifts. (a) Fatigue-induced lower limb exercises, including

dorsiflexion/plantar flexion and squats, with a barbell held in the hands. (b) Experimental setup simulating electrode shifts, where

different electrode pairs and transducers correspond to initial positions and four shift directions.

shoulder-width apart on the ground and held a barbell plate

(10 kg for males, 5 kg for females) with both hands. They

then performed a complete lower limb exercise, including

one repetition of standing plantar flexion and dorsiflexion,

followed by one deep squat. After completing 10 full lower

limb exercises, the participants immediately returned to the

treadmill for the next walking trial without rest. The process

was repeated until the participant completed 10 walking

trials.

3.3.4 Electrode shift. Eight subjects participated in the

electrode shift experiment. This section of the experiment

was conducted on a separate day and involved walking

on level ground at a speed of 1.0 m/s. As shown in

Figure 4 (b), to simulate electrode shifts, an electrode

constellation was attached around the muscle bellies. This

constellation consisted of four bipolar electrodes arranged

symmetrically. The initial electrode position was determined

by the difference between B and C, which corresponded to

the nominal electrode placement. The shift locations were

labeled AB, CD, EF, and GH, corresponding to upward,

downward, leftward, and rightward offsets, respectively. The

numbers 1 through 5 indicate the positions of the transducers,

with their shift directions aligned to match those of the

electrodes. The participants first completed the preparation

and performed walking trials in the initial position. The

assessors then manually adjusted the positions of the

differential electrodes and transducers in four directions

sequentially and repeated the experimental procedure such

as the initial position. This process continued until five trials

were collected for each shift position. A total of 25 trials

were recorded for each participant regarding electrode shifts.

3.3.5 Inter-day difference. This section of the experiment

also involved eight participants and was conducted on a

separate day. It included level-ground walking at speeds

of 0.5 m/s, 1.0 m/s, and 1.5 m/s. The placements of the

electrodes and transducers, as well as the experimental

procedure, were consistent with the ideal experimental

conditions, except the effects of manual electrode shifts and

muscle fatigue. Each participant completed a total of 15

trials in the inter-day differences experiment. For the eight

participants who underwent multiple data collections, the

data from the ideal condition of level-ground walking and

the initial position data from the electrode shift experiment

were also included as part of the inter-day differences data.

3.4 Synchronization procedure

For all conditions, the data collection procedure was the same

across all trials. All codes and software were run on the same

computer (DELL Precision 7920). Before the start of each

trial, the participants were instructed to stand naturally in the

middle of the treadmill. The operator modified the values of

the variables in the MATLAB code, including the acquisition

condition, ambulation mode, treadmill ramp, speed, and trial

number (e.g., ‘Ideal’, ‘LG’, ‘0’, ‘1.0’, ‘1’). The MATLAB

code sent the start messages to the Nexus software via UDP
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communication to trigger data capture, promoting the Nexus

software to set the Vicon Lock Lab ports to high voltage (5

V). At this point, the sEMG and AUS devices connected to

the Vicon Lock Lab were synchronously triggered to start

data acquisition, whereas the MATLAB code established a

TCP communication connection with the treadmill. Next, the

MATLAB code generated five short beeps, each lasting 1

second, followed by one long beep to signal the participant

to get ready. The treadmill was then started according to

the speed and ramp parameters. After the participant walked

for 40 seconds, the MATLAB code sent stop messages

to the Nexus software, causing the Vicon Lock Lab ports

to switch to low voltage (0 V). Consequently, all devices

stopped collecting data synchronously, and the treadmill

ceased operation. Each trial, therefore, included a 45-second

data collection period. In addition to the muscle fatigue

experiment, the participants were instructed to rest between

trials for each condition to avoid fatigue.

3.5 Data Elaboration

3.5.1 Motion capture processing. After data acquisition,

motion capture data were processed via Vicon Nexus

software (version 2.10, Vicon, Oxford, UK). Retro-reflective

markers were labeled and their 3D coordinates were

reconstructed. This process allowed the assignment of

specified marker names, as illustrated in Figure 2. Trajectory

gaps caused by visual occlusion were manually filled using

spline fill, pattern fill, rigid body fill, or kinematic fill,

depending on the gap length and marker position. The

maximum gap length of the spline fill was limited to 20

consecutive frames, and unlabeled marker trajectories were

deleted. Further processing was conducted by running the

Plug-in Gait Dynamic pipeline in Vicon Nexus. The marker

trajectories were filtered via a 4th, zero-lag Butterworth low-

pass filter with a cutoff frequency of 6 Hz and a Woltring

filter with the MSE mode and a smoothing parameter

of 20. The force plate data were filtered via the same

Butterworth low-pass filter applied to the marker trajectories.

Gait cycle events, including heel strike (HS) and toe-off

(TO), were identified for both sides via vertical ground

reaction forces (threshold: 20 N) from the force plates and

trajectories of the foot markers. The dynamic Plug-in Gait

Model subsequently calculated joint kinematics and kinetics

by integrating motion capture data with subject-specific

anthropometric characteristics. Finally, the processed data

were exported as ‘*.c3d’ files, containing joint angles, joint

forces, joint moments, joint power, and gait events. Detailed

information on motion capture processing is available at the

Vicon Nexus User Guide and the Plug-in Gait Reference

Guide.

3.5.2 Data processing. The sEMG data for all partici-

pants were stored in the MR software database and exported

as ‘*.mat‘ files, whereas the AUS data were directly saved

as ‘*.txt‘ files upon completion of data acquisition. To parse

multimodal data into strides and perform time normaliza-

tion, the participants’ data were compiled into a unified

MATLAB structure. Further postprocessing was conducted

in MATLAB (version 2022b, MathWorks, Natick, MA,

USA). A stride was defined as the motion cycle between

two consecutive heel strikes of the same leg. For walking

trials, the MATLAB pipeline extracted joint angles, joint

forces, joint moments, joint power, and gait events from

‘*.c3d’ files, and parsed the data into strides on the basis

of the identified gait events. Each stride was subsequently

time normalized by linearly interpolating to 200 data points,

ensuring consistent sampling for each gait cycle. To retain

steady walking gait cycles for each trial, data collected

during treadmill startup were excluded on the basis of the

treadmill’s speed, acceleration, and standing time for each

trial. Only gait cycles from steady walking were parsed

and time-normalized. Then, the ultrasound data from four

AUS channels for each trial were extracted and merged

from the corresponding ‘*.txt‘ files. The ultrasound frames

were segmented into cycles based on gait events. Similarly,

sEMG data were extracted from individual channels in the

‘*.mat‘ files and segmented according to the corresponding

gait events on each side of the body. Finally, the processed

sEMG and AUS data were merged into the unified MATLAB

structure.

4 Dataset Structure

All the data are uploaded to Kaggle, and detailed descriptions

are available at https://k2muse.github.io/datasets/. The

K2MUSE dataset comprises kinematic, kinetic, ultrasound,

and sEMG data, along with the anthropometric information

of participants, as illustrated in Figure 5 (a). The

participants’ basic information is stored in a file named

‘ParticipantInformation.xlsx’, which includes details such as

ID, gender, birthday, age, height, weight, shoe size, knee

width, ankle width, and leg length. The ‘figData.mat’ file

contains the average joint angles, joint moments, and joint

power values for all participants, which are used to plot the

curves in Figure 7.
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4.1 Processed data

To facilitate the use of the dataset in this study, all modality

data are stored in the ‘ProcessedData’ folder. Each partici-

pant’s data are organized into a unified MATLAB structure

and saved in the format ‘P*.mat’, where ‘*’ corresponds

to the participant ID (ranging from 1–30). Each ‘P*.mat’

file follows a standardized field structure, as shown in

Figure 5 (b). The ‘P*.mat’ files include kinematic data

(3D marker trajectories, 3D joint angles), kinetic data (3D

joint forces, 3D joint moments, and 3D joint power), AUS

data, sEMG data, and gait events. The ‘OriginalData’ field

corresponds to the continuous data for each trial, which

were directly extracted from the files exported by different

devices without any further processing. The ‘Normalized-

Data’ field contains the same data, but they have been nor-

malized by stride and segmented into gait cycles, ensuring

consistency and facilitating analysis. The naming conven-

tion for the sub-structures of ‘OriginalData’ and ‘Normal-

izedData’ is organized as follows: (condition).(ambulation

mode).(speed).(trial).(datatype). This structure ensures that

the data are clearly categorized based on experimental con-

ditions, ambulation modes, walking speed, trial number, and

specific datatype. The data structure and descriptions stored

in the trial fields of both ‘OriginalData’ and ‘Normalized-

Data’ are presented in Table 2 and Table 3, respectively.

Further detailed descriptions of the ‘P*.mat’ files in the

dataset are available at https://k2muse.github.io/datasets/.

4.2 Source data

All raw, unprocessed data are exported and stored in the

‘SourceData’ folder. The subfolders within SourceData–

Vicon, Noraxon, and ELONXI–correspond to data collected

by different devices. In the ‘Vicon’ subfolder, kinematic

and kinetic data are organized in a hierarchical structure

of ‘Participant ID/Condition/*.c3d’. In the ‘Noraxon’

subfolder, sEMG data are stored in a hierarchical structure

of ‘Participant ID/*.mat’. In the ‘ELONXI’ subfolder,

AUS data are organized in a hierarchical structure of

‘Participant ID/Condition/Ambulation Mode/.txt’. Similarly,

more details about the ‘SourceData’ folder can be found at:

https://k2muse.github.io/datasets/.

5 Analysis and Validation

5.1 Reliability of the Plug-in Gait protocol

The Plug-in Gait marker set employed in this study exhibits

excellent intra-protocol repeatability and is widely utilized

in gait analysis. The primary source of variability arises

from differences in marker placement, which remains the

key factor contributing to motion capture discrepancies

Gorton III et al. (2009). The marker placement procedure,

which is based on anatomical landmarks, was carefully

designed to minimize variability. To ensure reliability and

consistency, two assessors were responsible for marker

placement across the entire dataset. Since two types of tape

were used for fixation, marker detachment occurred only in

rare cases. If a marker fell off, it was promptly reattached

to the exact same position, guided by the imprint left on the

skin. The authors utilized the validated Vicon Plug-in Gait

model to ensure reliable marker placement Davis III et al.

(1991); Grood and Suntay (1983). The standard and widely

adopted Plug-in Gait Dynamic pipeline in the Vicon Nexus

software was employed for motion data processing, ensuring

high reliability Kainz et al. (2017).

5.2 Motion capture and sensor data

Before each experimental session, the motion capture system

was calibrated according to the manufacturer’s standard

procedure, which involved calibrating the capture volume

and setting the volume origin. The system was recalibrated

whenever any camera was unintentionally disturbed by

external factors. The force plates in the Bertec treadmill

were subsequently reset, including leveling the treadmill and

setting it to zero level in the Nexus software. The force

plates were zeroed in Nexus each time the treadmill incline

was changed. The retro-reflective markers, sEMG sensors

and AUS transducers were positioned through palpation of

bony landmarks and muscle tissue, referring to the guidelines

of Hermens et al. (2000) and Rabuffetti et al. (2019). The

sEMG and AUS signals were inspected at the beginning

of each trial and monitored throughout, ensuring consistent

quality.

5.3 Synchronization

Figure 6 presents data collected from different devices

during steady-state walking at 1.0 m/s on level ground by

a participant, including AUS and sEMG data of the left

leg’s rectus femoris (RF), as well as the left hip joint angle.

The AUS data utilize a brightness-based method to track

variations in muscle thickness Jin et al. (2024). Following

the heel strike of the left foot, the hip joint angle decreases

from its peak value. During this phase, the left leg supports

the body, leading to RF contraction, an increase in muscle

thickness, and an increase in the sEMG signal amplitude.

As the left hip joint angle reaches its minimum value, the

center of gravity shifts toward the right leg. At this point,
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Figure 5. Data organization outlines (a) the folder structure of the dataset and (b) the structured ’P*.mat’ file for the participant.

Table 2. Datatype in the ‘OriginalData’ structure – unprocessed data without parsing or normalizing.

Field within structure Units Sampling rate Contents

Markers (m) 100 Hz Positions of the markers defined in Figure 2 in the global coordinate system.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z location in the global space

Angles (deg) 100 Hz Pelvic tilt, hip, knee, ankle and foot angles as defined by the Plug-in Gait

Model.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z rotation in local space

Forces (N/kg) 100 Hz Forces acting on hip, knee, ankle joints, expressed in the local coordinate

frame of distal segment.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z joint forces

Moments (N.m/kg) 100 Hz Hip, knee, and ankle moments normalized by the participant’s mass as

defined by the Plug-in Gait model

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z joint moments

Powers (W/kg) 100 Hz Powers at each joint normalized by the participant’s mass, calculated as the

multiplication of joint moment and joint velocity.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z joint powers

Events (s), (Frame) N/A Gait events (heel strike and toe-off) detected by force plates in each trial,

presented in both time and frame number formats.

Array Format: (1 × HS/TO number)

Second Dimension: numbers of gait events.

USData mm 20 Hz The extracted and merged AUS data, with frames shaped as (4, 1000), where

rows 1 to 4 correspond to transducer channels 1 to 4.

Array Format: (total frames × 1)

First Dimension: Frames in trial

EMGData µV 2000 Hz The extracted and merged sEMG data, where columns 1 to 13 correspond to

sensor channels 1 to 13.

Array Format: (total samples × 13)

First Dimension: Samples in trial

Second Dimension: sEMG sensor channels
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Table 3. Datatype in the ‘NormalizedData’ structure – data parsed and time-normalized by strides.

Field within structure Sampling rate Contents

Markers (m) Array Format: (200 × 3 × stride)

First Dimension: normalized gait cycle across the stride (200 points)

Second Dimension: x/y/z location in the global space

Third Dimension: stride number

Angles (deg) Array Format: (200 × 3 × stride)

First Dimension: normalized gait cycle across the stride (200 points)

Second Dimension: x/y/z rotation in local space

Third Dimension: stride number

Forces (N/kg) Array Format: (200 × 3 × stride)

First Dimension: normalized gait cycle across the stride (200 points)

Second Dimension: x/y/z joint forces

Third Dimension: stride number

Moments (N.m/kg) Array Format: (200 × 3 × stride)

First Dimension: normalized gait cycle across the stride (200 points)

Second Dimension: x/y/z joint moments

Third Dimension: stride number

Powers (W/kg) Array Format: (200 × 3 × stride)

First Dimension: normalized gait cycle across the stride (200 points)

Second Dimension: x/y/z joint powers

Third Dimension: stride number

Events (Frame) Array Format: (1 × HS number)

Second Dimension: stride number

USData mm Array Format: (stride × 1)

First Dimension: stride number

EMGData µV Array Format: (stride × 1)

First Dimension: stride number

the muscle thickness of the left RF reaches its maximum,

and the sEMG signal amplitude begins to decrease. Between

the current toe-off and the next heel strike of the left foot,

the hip joint angle increases because of body inertia. During

this period, the muscle does not exert significant force,

resulting in a reduction in both muscle thickness and sEMG

signal amplitude until the next heel strike occurs. Therefore,

according to the above analysis, the simultaneous changes in

the joint angle, muscle thickness, and sEMG signal intensity

demonstrate synchronization between multiple devices.

5.4 Kinematic and kinetic data

Given that all participants in this dataset are able-bodied

and based on the assumption of symmetric kinematics,

the presented joint kinematic and kinetic data are derived

from the right legs. The joint angles and moments in the

sagittal plane under ideal conditions are depicted in Figure 7.

Positive joint angle values represent ankle dorsiflexion, knee

flexion, and hip flexion, whereas positive joint moment

values denote ankle plantar flexion, knee extension, and hip

extension. The repeatability of data reflects the consistency

in participants’ movements, which directly impacts the

performance of intention recognition and the reliable

operation of robotic systems Wei et al. (2023). To ensure

this repeatability, the joint angles across participants were

validated through the following procedure. First, the mean

joint angles were calculated for all gait cycles of each

ambulation mode for each participant. Next, the average

coefficient of determination (R2) was computed between the

joint angles of each gait cycle and their corresponding mean

values. Finally, the R2 scores for each participant under each

ambulation mode were weighted on the basis of the range

of motion of the hip, knee, and ankle joints to derive the

final R2. Figure 8 presents the distribution of R2 values for

the angles across the five walking modes, with most values

exceeding 0.8, demonstrating good repeatability.

5.5 Nonideal condition analysis

According to the description in Section 3.3, the K2MUSE

dataset encompasses common nonideal conditions, including

muscle fatigue, electrode shifts, and inter-day differences. In

this section, we analyze the impact of nonideal conditions on

signal acquisition, using sEMG variations as a representative

example.
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Figure 6. During level-ground walking at 1.0 m/s, the representative AUS and sEMG data of the left rectus femoris (RF), along

with the left hip joint angle data, were recorded. The insets on the right side of the AUS data present representative raw AUS data

captured at specific time frames.

5.5.1 Muscle fatigue. Muscle fatigue can lead to feature

drift in human-machine interfaces, as sEMG-based features

are sensitive to fatigue states Wu et al. (2016). The median

frequency (MDF) and mean frequency (MF) of sEMG

signals are widely recognized as reliable indicators for

assessing muscle fatigue, as both have been shown to

decrease with increasing levels of fatigue Chandra et al.

(2018). Figure 9 depicts the distribution of two frequency

features of the left leg RF for a participant throughout each

walking trial as the fatigue-enhanced exercise progresses.

Starting from the first trial, the distributions of MDF and MF

gradually decrease. Although slight increase is observed in

the 8th trial, the feature distributions continue to decline in

the subsequent two trials. This trend aligns with the findings

of Chandra et al. (2018).

5.5.2 Electrode Shifts. To simulate electrode shifts, four

offset positions were established in different directions

around the initial position. The MAV was selected as the

metric for measuring the sEMG amplitudes of the four

muscles in the left leg Zhu et al. (2022). As shown in

Figure 10 (a), for all five repeated trials of a participant

at different shift positions, the maximum muscle action

potentials were determined by averaging the maximum MAV

values across all gait cycles. For the four muscles, the

maximum sEMG amplitudes were recorded at the initial

position. The amplitudes for the shank muscles (TA and LG)

were smallest at the upward and rightward shift positions,

whereas the amplitudes for the thigh muscles (RF and BF)

were smallest at the leftward and downward offset positions.

Additionally, Figure 10 (b) illustrates the amplitude variation

of LG throughout gait cycles, with the curve for the initial

position consistently above those for the other shift positions.

5.5.3 Inter-day difference. The data collection for inter-

day differences was conducted on a separate day from

the ideal condition. Consequently, a comparative analysis

of sEMG under these two conditions was performed.

We examined the MAV values of sEMG signals across

all gait cycles from five walking trials of a participant

at walking speeds of 0.5 m/s, 1.0 m/s, and 1.5 m/s.

As shown in Figure 11 (a), for the three walking

speeds, the MAV variations throughout the gait cycle

exhibit similar trends under both conditions. However,

significant amplitude differences are observed, indicating

that while the participant’s walking pattern remains

consistent, the characteristics of the sEMG signal have

changed. Specifically, the Euclidean distance shown in

Figure 11 (b) provides a quantitative assessment. The intra-

condition distances for both the ideal condition and inter-day

differences remain relatively small, indicating consistency in

the sEMG data characteristics across the five trials within

each condition. However, the significantly greater Euclidean

distance between the ideal condition and inter-day difference

suggests that variations in the participant’s physiological

state on different days result in notable changes in the sEMG

signal characteristics.
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Figure 7. Joint angles and moments during ideal condition experiments. Two consecutive heel strikes correspond to 0% and 100%

of the gait cycle. The ambulation mode is annotated at the top. The solid lines indicate the average trajectory across all participants.

The shaded regions correspond to the standard deviation.

5.6 Joint angle prediction

To assess the performance of decoding lower limb

movements using sEMG and AUS signals, we utilized a

support vector regression (SVR) model, a Gaussian process

regression (GPR) model, and a multilayer perceptron (MLP)

to predict the joint angles of the left leg during level-

ground walking at a speed of 1.0 m/s. Given that the

focus was not on algorithmic novelty, all the models were

implemented via scikit-learn library. For the sEMG data, a

fourth-order Butterworth bandpass filter (20–500 Hz) was

initially applied, followed by a 50 Hz notch filter. The

filtered sEMG data were then segmented into windows of

300 sample points, with a 200 sample point overlap. The

sEMG features, including the mean absolute value (MAV),

waveform length, zero crossings, and slope sign changes,

were extracted for each window Li et al. (2024). For the

AUS data, the raw signal of each frame was processed

sequentially through time gain compensation, bandpass
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Figure 8. The evaluation of repeatability. The circles represent

the R2 between the average angle and joint angles for

each participant across different ambulation modes. The box

represents the distribution of R2 for each movement.
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Figure 9. Violin plots depicting the distributions of the median

frequency and mean frequency of RF in the left leg during

gradual muscle fatigue trials.

filtering, envelope detection, and log compression Zeng et al.

(2021). The frames were then segmented into a series of

windows, each containing 20 sample points. The first and

last 20 points were discarded prior to segmentation, as they

typically do not contain valuable information, resulting in 48

segments per frame Yang et al. (2022). Two types of features

are subsequently calculated for the AUS data: the MSD

feature (mean and standard deviation) and the SFO feature

(spatial first-order feature) Yang et al. (2019). Finally, the

sEMG and AUS features were normalized via the Min-Max

normalization method. Additionally, principal component

analysis (PCA) was applied to the AUS feature sets to reduce
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Figure 10. For the five shift positions: (a) the mean of the

maximum MAV across all gait cycles for sEMG signals recorded

from four muscles of the left leg; (b) MAV variation of the LG in

the left leg throughout the gait cycle. The solid lines represent the

average values across all cycles, whereas the shaded regions

denote the standard deviation.

the dimension Yang et al. (2022). We employed 5-fold cross-

validation, with each trial serving as one of the folds. The

root mean square error (RMSE) was calculated for each

participant to evaluate the regression performance.

To evaluate the performance of the sEMG, AUS, and

multimodal fusion data, single-modal inputs used sEMG,

MSD, and SFO features, respectively. The multimodal

inputs included different feature fusion combinations:

sEMG&MSD, sEMG&SFO, and MSD&SFO features.

Figure 12 (a)–(f) shows the RMSE results for predicting the

ankle, knee, and hip joint angles on the basis of different

features. Among the predictions based on the sEMG features,

the MLP demonstrated the best performance, achieving

average RMSE values of 3.58◦, 7.69◦, and 5.49◦ for the

ankle, knee, and hip joints, respectively. For the prediction

based on MSD features, all three models exhibited similar

performances, with average RMSE values of approximately

4.1◦, 10.2◦, and 5.8◦ for the ankle, knee, and hip joints,

respectively. In the prediction based on SFO features,

SVR showed a slight advantage, yielding average RMSE

values of 4.08◦, 10.12◦, and 5.91◦ for the ankle, knee,

and hip joints, respectively. Compared with single-modality
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Figure 11. For ideal conditions and inter-day differences: (a)

The variation in MAV values of the left leg LG throughout the

gait cycle. The solid lines represent the average values across

all gait cycles from five walking trials, whereas the shaded

regions indicate the standard deviation. (b) Comparison of the

Euclidean distance of MAV values for the left leg LG under two

conditions: intra-condition trial comparisons and inter-condition

trial comparisons. The bar height represents the mean value,

and the error bars indicate the standard deviation.

features, the performance of the fusion of the sEMG&MSD

and sEMG&SFO features was improved, resulting in

smaller RMSE values. The performance enhancement for

the sEMG&MSD and sEMG&SFO fusion features was

particularly pronounced for the SVR and GPR models,

with average RMSE values for the ankle, knee, and hip

joint angles reduced to approximately 3.4◦, 7.3◦, and

4.3◦, respectively. However, the combination of MSD&SFO

features did not improve model performance, yielding

RMSE values similar to those obtained from single MSD

or SFO features. Therefore, combining different features of

the same modality did not yield significant improvements.

However, the fusion of sEMG and AUS signals, which

incorporates both action potential information and thickness

variation data from muscle contraction, demonstrates

the potential of multimodal fusion for enhanced intent

recognition. These results demonstrate the applicability of

our dataset (K2MUSE) for lower limb joint angle estimation.

We evaluated recognition performance across three non-

ideal conditions using sEMG features as input variables.

To effectively demonstrate the impact of these non-ideal

conditions, we implemented testing protocols that deviated

from conventional cross-validation approaches. For the

electrode shifts, data from the initial position was used as

the training dataset, while data from the other four shift

positions served as the testing dataset. In the case of muscle

fatigue, data from the first trial was designated as the

training set, with data from the remaining nine trials used

as testing dataset. For inter-day differences, data from the

ideal condition experiments served as the training dataset,

while data collected on a separate day was used as the

testing dataset. The obtained angle prediction results are

illustrated in Figure 12 (g), (h), and (i). Taking the MLP as an

example, the RMSEs for the ankle, knee, and hip joints under

electrode shifts, muscle fatigue, and inter-day differences are

as follows: 5.36◦, 11.36◦, 8.88◦; 3.96◦, 10.05◦, 6.61◦; 8.73◦,

19.67◦, 11.92◦. Compared to Figure 12 (a), the RMSEs

under the three non-ideal conditions increase to varying

extents, demonstrating the negative impact of non-ideal

conditions on recognition performance. This observation is

consistent with the analysis of MAV features presented in

Section 5.5.

5.7 Comparison with public datasets

To evaluate the validity of the data from walking on different

terrains, we compared the ankle, knee, and hip angles

with two publicly available datasets. For the dataset from

Reznick et al. (2021), the comparison includes walking data

on various ramps, with all walking speeds set to 1.0 m/s. The

participants in this dataset are healthy, with an average age

of 30.5 years. In the dataset from Scherpereel et al. (2023),

owing to differences in experimental paradigms, walking on

ramps was compared at 1.0 m/s, whereas walking on level

ground was compared at 1.2 m/s. The population in this

dataset has an average age of 21.8 years, which is similar

to that of our study.

We calculated the average values of our data, along

with the cross-correlation coefficient (XCOR) and Pearson

correlation coefficient (PCC), with the selected comparison

datasets, as shown in Table 4. The results demonstrate that

K2MUSE is highly correlated with previous studies. For the

data from Reznick et al. (2021), the XCOR and PCC for

joint angles range from 0.88 to 0.99 and from 0.93 to 0.99,

respectively. Similarly, for the data from Scherpereel et al.

(2023), the XCOR and PCC for joint angles range from 0.81

to 0.99 and from 0.90 to 0.99, respectively.

For walking tasks comparable to those in other datasets,

we compared the trends in kinematic and kinetic variations.

Compared with the dataset from Camargo et al. (2021), the
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Figure 12. Regression results for angle estimation. (a), (b), and (c) show RMSE with inputs of sEMG, MSD, and SFO features,

respectively. (d), (e), and (f) show RMSE with inputs of sEMG&MSD, sEMG&SFO, and MSD&SFO features, respectively. The

height of the bars represents the mean value across all participants, whereas the error bars indicate the standard deviation. (g),

(h), and (i) represent RMSE for electrode shifts, muscle fatigue, and inter-day differences, respectively, with sEMG features as the

input.

Table 4. Summary of the XCOR and PCC results between the K2MUSE dataset and the comparison datasets.

LG 0 AS 5 AS 10 DS 5 DS 10

Ankle Knee Hip Ankle Knee Hip Ankle Knee Hip Ankle Knee Hip Ankle Knee Hip

Reznick et al. (2021)
XCOR 0.93 0.98 0.99 0.93 0.97 0.99 0.98 0.97 0.98 0.90 0.97 0.96 0.88 0.97 0.90

PCC 0.93 0.96 0.99 0.95 0.96 0.98 0.96 0.97 0.99 0.96 0.97 0.99 0.93 0.96 0.98

Scherpereel et al. (2023)
XCOR 0.82 0.99 0.99 0.82 0.99 0.99 0.91 0.99 0.99 0.81 0.99 0.98 0.81 0.99 0.98

PCC 0.93 0.94 0.98 0.92 0.92 0.98 0.95 0.94 0.99 0.91 0.93 0.97 0.90 0.93 0.95

kinematic and kinetic variations in walking on level ground

are similar. In kinematic analysis, the hip joint angle follows

a nearly sinusoidal pattern, ranging from approximately 20◦

of flexion to 20◦ of extension. Similarly, the range of motion

the ankle joint motion spans from 15◦ of dorsiflexion to 15◦

of plantar flexion, and the knee joint kinematics range from

0◦ to 60◦. Additionally, similar trends in kinematics and

kinetics are observed during walking on 5◦ ascending and

descending ramps compared with Dimitrov et al. (2023).

5.8 Potential applications

Our dataset encompasses a diverse range of variables,

comprehensively covering multiple terrains and acquisition

conditions. In biomechanical analysis, a wealth of kinematic,

dynamic, and physiological data (sEMG, AUS) enables a

comprehensive analysis of body movement performance

from the perspective of motion mechanisms, particularly

through the integration of muscle synergy d’Avella et al.

(2003); Zhong et al. (2022). This rich dataset also provides

valuable data support for big data-driven methods to

uncover powerful solutions for intent decoding Jin et al.

(2024); Wang et al. (2024). Additionally, the extensive

human data in our dataset enable a more comprehensive

evaluation of robotic performance. Currently, rehabilitation

robots, such as exoskeletons, rely primarily on straps

and similar mechanisms for physical interaction. However,

the underlying interaction mechanism and mechanical

Prepared using sagej.cls



Li et al. 19

coupling often result in an expected assistance effect that

is not fully transmitted, leading to an efficiency gap.

By leveraging our dataset, this efficiency gap can be

better analyzed and quantified, providing a solid foundation

for optimizing exoskeleton design and improving overall

assistive performance.

In bionic design for robots, as shown in Figure 13 (a)–(c),

exoskeletons are evolving toward a rigid-flexible coupling

approach, progressing from joint assistance with elastic

actuators Chen et al. (2024a) to muscle assistance via

tendon-driven mechanisms Tan et al. (2022), and further

toward bioinspired design optimization Liu et al. (2024).

To increase their effectiveness, the system design of

rehabilitation robots should align with actual biomechanics,

ensuring that actuation effects conform to physiological

principles. K2MUSE not only provides comprehensive data

on joint and limb movements but also captures physiological

changes in muscle contraction, enabling the development

of more ergonomic and biomimetic robotic designs. In

terms of controller design for robots, handling variations in

terrains and movement patterns requires adaptable control

strategies. In Figure 13 (d), an end-to-end controller built

upon the dataset can dynamically adjust to changing motion

tasks while ensuring scalability Molinaro et al. (2024b). In

Figure 13 (e) and (f), without relying on manual tuning or

predefined control laws, these controllers can be generalized

to a wider range of tasks as the dataset expands, increasing

their adaptability and robustness in real-world applications

Molinaro et al. (2024a); Luo et al. (2024).

5.9 Data limitations

Given that the dataset involved multiple acquisition systems

and extensive data collection sessions, only data from female

participants walking at 1.0 m/s on different ramps were

included. Owing to recruitment limitations, the participant

diversity in this dataset is restricted, preventing the data from

fully representing the entire population. Additionally, some

trials from certain participants contained defective data due

to an investigator error, which was later recollected.

6 Usage notes

MATLAB and Python scripts are provided to assist

users in visualizing and utilizing data. These scripts

provide instructions for loading data from the ‘Pro-

cessedData’ folder, generating plots, and performing

joint angle estimation via machine learning models. For

additional details on data usage, please refer to the

README file. The metadata in the ‘*.c3d’ files can

Figure 13. Innovative exploration of various exoskeleton

designs and control strategies: (a) hip-knee-ankle exoskeleton

with series elastic actuators; (b) soft exosuit; (c) ligaments-

inspired knee exoskeleton; (d) task-agnostic exoskeleton control;

(e) unified exoskeleton control; (f) sim2real framework for the

exoskeleton.

be directly accessed via the open-source software Mokka.

Alternatively, the open-source and cross-platform library

Biomechanics ToolKit (BTK) can also be used to parse

‘*.c3d’ files.

7 Code availability

The dataset and codes used to pro-

cess the data can be found at

Kaggle – K2MUSE: A Human Lower Limb Multimodal Dataset.

The data can be accessed via MATLAB, and a

description of the dataset hierarchy is available at

https://k2muse.github.io/datasets/. The joint angle

estimation, based on machine learning models, is

implemented via Python.

• scriptProcess.mlx is used to extract and parse

data collected from different devices in the ‘SourceData’

folder and save the data in a unified format.

• scriptPlot.mlx is used to plot graphs showing the

changes in joint angles and moments during the gait cycle

in gait analysis.

• recognitionDemo.ipynb is designed for process-

ing sEMG, AUS, and kinematic data, building machine

learning models, and analyzing the results.
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8 Conclusion and future work

In this paper, we presented the K2MUSE dataset, a large-

scale lower limb dataset that includes 3D motion trajectories,

ground reaction forces, amplitude-mode ultrasound, and

sEMG data. We collected data across up to 20 different

ambulation conditions, including different speeds, inclines,

and nonideal conditions. By comparing our dataset with

existing public datasets, we evaluated and analyzed the

quality and validity of the dataset. K2MUSE provides a

comprehensive data resource for the development of natural

interaction control algorithms and human motion recognition

in rehabilitation robotics.

In the future, we plan to expand the scope of K2MUSE

by incorporating additional walking tasks, such as sit-to-

stand and sit-to-walk transitions Huo et al. (2021), as well

as broader walking environments, including outdoor settings

and stairs. We also aim to include a larger participant pool,

such as stroke patients. Furthermore, we will gather walking

data while wearing assistive robots, enabling comparative

analysis with natural walking patterns. We believe these

efforts will further advance the development of rehabilitation

robots, and we look forward to the creation of algorithms

based on this dataset that can achieve embodied intelligence

in robots in future research.

Acknowledgements

The authors extend their gratitude to all the volunteers and

colleagues who contributed to the experiments for this dataset. The

authors also appreciate the development and experimental support

provided by the State Key Laboratory of Robotics, Shenyang

Institute of Automation, Chinese Academy of Sciences.

Declaration of conflicting interests

The author(s) declare no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This work was supported in part by the National Natural

Science Foundation of China under Grants 62473361, 62333007,

and U22A2067; in part by the Natural Science Foundation of

Liaoning Province under Grant 2025JH6/101000028; in part by the

Fundamental Research Project of SIA under Grant 2024JC1K01;

and in part by the China Postdoctoral Science Foundation under

Grant 2024M753412.

ORCID iDs

Jiwei Li https://orcid.org/0009-0000-2297-8278

Bi Zhang https://orcid.org/0000-0001-8001-002X

Xiaowei Tan https://orcid.org/0000-0003-0990-0323

Wanxin Chen https://orcid.org/0000-0001-5930-0209

Zhaoyuan Liu https://orcid.org/0009-0002-5195-6128

Juanjuan Zhang https://orcid.org/0000-0002-3833-487X

Weiguang Huo https://orcid.org/0000-0002-7370-5189

Jian Huang https://orcid.org/0000-0002-6267-8824

Lianqing Liu https://orcid.org/0000-0003-1329-1487

Xingang Zhao https://orcid.org/0000-0001-8194-1870

References

Bovi G, Rabuffetti M, Mazzoleni P and Ferrarin M (2011) A

multiple-task gait analysis approach: kinematic, kinetic and

emg reference data for healthy young and adult subjects. Gait

& posture 33(1): 6–13.

Brantley JA, Luu TP, Nakagome S, Zhu F and Contreras-Vidal

JL (2018) Full body mobile brain-body imaging data during

unconstrained locomotion on stairs, ramps, and level ground.

Scientific data 5(1): 1–10.

Camargo J, Ramanathan A, Flanagan W and Young A (2021) A

comprehensive, open-source dataset of lower limb biomechan-

ics in multiple conditions of stairs, ramps, and level-ground

ambulation and transitions. Journal of Biomechanics 119:

110320.

Chandra S, Hayashibe M and Thondiyath A (2018) Muscle fatigue

induced hand tremor clustering in dynamic laparoscopic

manipulation. IEEE Transactions on Systems, Man, and

Cybernetics: Systems 50(12): 5420–5431.

Chen W, Zhang B, Tan X, Zhao Y, Liu L and Zhao X (2024a)

Hip–knee–ankle rehabilitation exoskeleton with compliant

actuators: From human–robot interaction control to clinical

evaluation. IEEE Transactions on Robotics .

Chen Y, Miao S, Chen G, Ye J, Fu C, Liang B, Song S

and Li X (2024b) Learning to assist different wearers in

multitasks: efficient and individualized human-in-the-loop

adaptation framework for lower-limb exoskeleton. IEEE

Transactions on Robotics .

d’Avella A, Saltiel P and Bizzi E (2003) Combinations of muscle

synergies in the construction of a natural motor behavior.

Nature neuroscience 6(3): 300–308.

David PF, David RC, Diego T et al. (2023) Human locomotion

databases: a systematic review. IEEE Journal of Biomedical

and Health Informatics 28(3): 1716–1729.

Davis III RB, Ounpuu S, Tyburski D and Gage JR (1991) A

gait analysis data collection and reduction technique. Human

Prepared using sagej.cls

https://orcid.org/0009-0000-2297-8278
https://orcid.org/0009-0000-2297-8278
https://orcid.org/0000-0001-8001-002X
https://orcid.org/0000-0001-8001-002X
https://orcid.org/0000-0003-0990-0323
https://orcid.org/0000-0003-0990-0323
https://orcid.org/0000-0001-5930-0209
https://orcid.org/0000-0001-5930-0209
https://orcid.org/0009-0002-5195-6128
https://orcid.org/0009-0002-5195-6128
https://orcid.org/0000-0002-3833-487X
https://orcid.org/0000-0002-3833-487X
https://orcid.org/0000-0002-7370-5189
https://orcid.org/0000-0002-7370-5189
https://orcid.org/0000-0002-6267-8824
https://orcid.org/0000-0002-6267-8824
https://orcid.org/0000-0003-1329-1487
https://orcid.org/0000-0003-1329-1487
https://orcid.org/0000-0001-8194-1870
https://orcid.org/0000-0001-8194-1870


Li et al. 21

movement science 10(5): 575–587.

Dick TJ, Biewener AA and Wakeling JM (2017) Comparison of

human gastrocnemius forces predicted by hill-type muscle

models and estimated from ultrasound images. Journal of

experimental biology 220(9): 1643–1653.

Dimitrov H, Bull AM and Farina D (2023) High-density emg, imu,

kinetic, and kinematic open-source data for comprehensive

locomotion activities. Scientific Data 10(1): 789.

Ding Y, Kim M, Kuindersma S and Walsh CJ (2018) Human-in-the-

loop optimization of hip assistance with a soft exosuit during

walking. Science robotics 3(15): eaar5438.

Divekar NV, Thomas GC, Yerva AR, Frame HB and Gregg

RD (2024) A versatile knee exoskeleton mitigates quadriceps

fatigue in lifting, lowering, and carrying tasks. Science

Robotics 9(94): eadr8282.

Elery T, Rezazadeh S, Nesler C and Gregg RD (2020) Design

and validation of a powered knee–ankle prosthesis with high-

torque, low-impedance actuators. IEEE Transactions on

Robotics 36(6): 1649–1668.

Fukuchi CA, Fukuchi RK and Duarte M (2018) A public dataset of

overground and treadmill walking kinematics and kinetics in

healthy individuals. PeerJ 6: e4640.

Gorton III GE, Hebert DA and Gannotti ME (2009) Assessment

of the kinematic variability among 12 motion analysis

laboratories. Gait & posture 29(3): 398–402.

Grood ES and Suntay WJ (1983) A joint coordinate system for the

clinical description of three-dimensional motions: Application

to the knee. Journal of Biomechanical Engineering 105(2):

136–144.

He Y, Luu TP, Nathan K, Nakagome S and Contreras-Vidal JL

(2018) A mobile brain-body imaging dataset recorded during

treadmill walking with a brain-computer interface. Scientific

data 5(1): 1–10.

Hermens HJ, Freriks B, Disselhorst-Klug C and Rau G (2000)

Development of recommendations for semg sensors and sensor

placement procedures. Journal of electromyography and

Kinesiology 10(5): 361–374.

Hu B, Rouse E and Hargrove L (2018) Benchmark datasets for

bilateral lower-limb neuromechanical signals from wearable

sensors during unassisted locomotion in able-bodied individ-

uals. Frontiers in Robotics and AI 5: 14.

Huo W, Moon H, Alouane MA, Bonnet V, Huang J, Amirat

Y, Vaidyanathan R and Mohammed S (2021) Impedance

modulation control of a lower-limb exoskeleton to assist sit-

to-stand movements. IEEE Transactions on Robotics 38(2):

1230–1249.

Jin Y, Alvarez JT, Suitor EL, Swaminathan K, Chin A, Civici

US, Nuckols RW, Howe RD and Walsh CJ (2024) Estimation

of joint torque in dynamic activities using wearable a-mode

ultrasound. Nature Communications 15(1): 5756.

Kainz H, Graham D, Edwards J, Walsh HP, Maine S, Boyd RN,

Lloyd DG, Modenese L and Carty CP (2017) Reliability of four

models for clinical gait analysis. Gait & posture 54: 325–331.

Kang I, Hsu H and Young A (2019) The effect of hip assistance

levels on human energetic cost using robotic hip exoskeletons.

IEEE Robotics and Automation Letters 4(2): 430–437.

Lencioni T, Carpinella I, Rabuffetti M, Marzegan A and Ferrarin M

(2019) Human kinematic, kinetic and emg data during different

walking and stair ascending and descending tasks. Scientific

data 6(1): 309.

Li J, Zhang B, Chen W, Bu C, Zhao Y and Zhao X

(2024) Improving hand gesture recognition robustness to

dynamic posture variations by multimodal deep feature fusion.

IEEE Transactions on Neural Systems and Rehabilitation

Engineering .

Liu Z, Han J, Han J and Zhang J (2024) Design and evaluation of

a lightweight, ligaments-inspired knee exoskeleton for walking

assistance. IEEE Robotics and Automation Letters .

Luo S, Jiang M, Zhang S, Zhu J, Yu S, Dominguez Silva I,

Wang T, Rouse E, Zhou B, Yuk H et al. (2024) Experiment-

free exoskeleton assistance via learning in simulation. Nature

630(8016): 353–359.

Luo Y, Coppola SM, Dixon PC, Li S, Dennerlein JT and Hu B

(2020) A database of human gait performance on irregular and

uneven surfaces collected by wearable sensors. Scientific data

7(1): 219.

Molinaro DD, Kang I and Young AJ (2024a) Estimating human

joint moments unifies exoskeleton control, reducing user effort.

Science Robotics 9(88): eadi8852.

Molinaro DD, Scherpereel KL, Schonhaut EB, Evangelopoulos

G, Shepherd MK and Young AJ (2024b) Task-agnostic

exoskeleton control via biological joint moment estimation.

Nature 635(8038): 337–344.

Moreira L, Figueiredo J, Fonseca P, Vilas-Boas JP and Santos

CP (2021) Lower limb kinematic, kinetic, and emg data from

young healthy humans during walking at controlled speeds.

Scientific data 8(1): 103.

Novacheck TF (1998) The biomechanics of running. Gait & posture

7(1): 77–95.

Nuckols RW, Lee S, Swaminathan K, Orzel D, Howe RD and Walsh

CJ (2021) Individualization of exosuit assistance based on

measured muscle dynamics during versatile walking. Science

robotics 6(60): eabj1362.

Ortiz M, de la Ossa L, Juan J, Iáñez E, Torricelli D, Tornero
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